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OPTIMAL CONDITIONS OF DECELERATING THE ROTATIONAL MOTION */725
OF A SYMMETRIC BODY

B.A.Smolt*nikov

_PRE7¥

The problem of determining the optimum operating conditions
of a torque-producing jet engine during deceleration of the
angular velocity of a symmetric rigid body, executing origi-
nally free motion in space about its own center of inertia,
is mathematically analyzed. Braking within minimum time

and braking at minimum consumption of the working medium
are calculated, at controlling moments of limited magnitude.
Optimum phase trajectories of the body, for both cases, are

derived,

The control of the rotary motion of a rigid body by means of a system of

the thrust of such engihes in conformity with the conditions of a specific prob-
lem. Below, we will examine the problem of determining the optimum operating
conditions of engines during deceleration of the angular velocity of a symmetric
rigid body executing originally free motion in space about its own center of in-
ertia, We will examine two regimes of deceleration: braking in minimum time
(neglecting consumption of the working medium) and braking at minimum consump-
tion of working medium (neglecting time). Although, in individual particular

1 cases, both these regimes may coincide, in the general case they are different

and thus require a separate investigation.

* Numbers in the margin indicate pagination in the original foreign text,
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We will assume in the analysis that the jet engines create controlling
moments about the principal axes of inertia of the body and that, during con-
sumption of the working medium, the moments of inertia of the body remain es-
sentially constant (just as the directions of the principal axes in the body).
The controlling moments are considered to be limited in magnitude.

As a result of the investigation it was found that, in the first case, all
three controlling moments act in reverse up to complete arrest of the body and,
in the second case, the transverse moments are included alternately, whereas the
longitudinal moment (directed along the axis of symmetry of the body) remains
included up to complete elimination of the longitudinal component of the angular
velocity of the body. The construction of the phase trajectories is given in

the problem of eliminating precessional motion of the body at constancy of its

longitudinal velocity component.,

1, Problem of Braking in Minimum Time

Let us examine the problem of finding the optimum conditions of decelerat-
ing a symmetric rigid body with respect to speed of response, Assuming, for
definitiveness, that the polar moment of inertia of the body C is greater than
its equatorial moment of inertia A, let us write the system of differential equa-

tions of motion of the body in the form of

mx m,

@ + e0,0, = —, 0, — E®, ©, =

A
(e= 55> 0) ‘ (1.1)
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The law of change of the controlling moments m,, m,, and m, (relative to
the principal axes of inertia x, y, 2) must be determined such that the angular

velocity components w,, w,, ®, (hereafter playing the role of phase coordinates)



will acquire the prescribed final values in minimum time., In the case of com-
plete braking of the body the final values of the angular velocity should become
equal to zero, whereas in the case of incomplete braking, for example when only
the precessional motion of the body is eliminated, only the transverse com- /726
ponents w,(T) and w,(T), where T is the time of completing the process, should
become equal toc Zere, In view of the linearity of the controlling moments rela-
tive to the derivatives in equations (1.1) it is convenient to use the principle
of the maximum for setting up the variational problem (Bibl.1l). Let us set up

the function H of the problem under consideration

H _ 2 . mx . ) + m ml l
= k‘Pkmk = Px\y T By O Py (_A’l_+ £0, O, + P:—— (1.2)
and write the system of equations for the phase impulses
Pr= —0H/ dwy .

In a developed form, it will be
Px + epy0, = 0, Py — &P, =0, P: — e (proy — py) =0. 1 (1.3)

Without specifying the boundary conditions of the problem for the time be-
ing, let us construct the necessary integrals of eqs,(1.1) and (1.3) and in-
vestigate the general character of the optimal control conditions, For this
purpose, using the principle of the meximum, let us establish the optimum law of
change of the controls my., Since the function H depends linearly on the con-
trols, it reaches its maximum at values of controls equal to their limiting
values; if the multiplier p, on m, is positive then the control will be at its
upper limit; if this multiplier is negative,it will be at the lower limit., Thus,

at py # O the optimum conditions of the change of moments m, will be on-off% and

% If B, = O, special conditions arise which may differ from on-off. These con-
ditions are discussed in greater detail in Lee's work (Bibl.3).
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will be determined by the following relations:
mp () =maxmy st >0 my(t) =minme st RO<O.T (g )
If the limits of the change of my are.symmetric with respect to zero, then
my (1) = max |my| sgn pg (1) - (1.5)
Here max |my| is the peak value of the k-th control. Hereafter in this

problem, m, will mean the quantity determinable by eq.(l.5).

2., Integrations of the Eguations of Optimm Motion

To obtain the solution of the system of equations (1.1) and (1.3) in which
the controls are determined according to egs.(1.5) we will first isolate the

following subsystem containing the variables p,, py, and ®,
px + epy0, =0, Py — epz0;, = 0, w, =m,/C. (2'1)
According to eq.(1.5), at each individual section of motion the moment m,

is constant so that the solution of the last of the written equations in the

section will be
®; = 0,y + C'lm,t . g (2.2)

Thus, the z-th component of the angular velocity of the body under optimal
braking conditions is a step function whose points of discontinuity according to
eq.(1.5), correspond to the roots of the function p,.

Let us introduce into the calculation the complex function [127

p=petipy . | (2.3)

From the first two equations of the system (2.1), we can obtain

P —iea,p=0. I (2.1)




) gx9 A\

The solution of this equation has the form
. ‘
p—'—-poexp(ie'gmzdt). ‘ (2.5)
[|]
Taking into account eq.(2.2) we find

em,

1 : j
e\m,dt= 50 2+ 0t = l(m‘g;ng) (I=;ﬁ ) .i (2.6)
[ ]

Then, in place of eq.(2.5) we will have

P exp (— ilw2?) = const - & (2.7)

The expression for the function p can also be represented in the form of

p = Pexp li (ho” T ol ,| (2.8)

where P and o are real constants of integration determinable from the boundary
conditions of the problem, Hence, for p, and p, we have
Pz = P cos (Aw? 4 a), Py = Psin (\o2 + q) . (2.9)

Multiplying the second equation of the system (1.1) by i and adding it to
the first, we obtain the equation for the complex transverse angular velocity

of the body:

o — is(ozu) =A"Im (m.—:mx—]—ia)u' m=m, - imv) . (2.10)

The general integral of this equation according to Lurtye (Bibl.2) has the

form

Sy ™

® =[mo+%§exp(—— ie mzdt)dt]BXp(ieS@zd‘) - (2,11)

Taking into account expression (2.6) and then changing from the variable t

to w,, an integration will yield

. 3 Y,
© = g exp [iM (0,2 — ©,3)] +5"%%_-9—(2—%—|) [C —C, ——
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—isgn A (S — Syl exp (iro.?) i (2.12)
S =5 (o, VX &:S@myTﬂLE

Here C(w) and S(w) are the Fresnel integrals,
- w ) . w ’
Cw =V 2\ cos v2¢ , =1/ 2\ s
) 1/3‘5 v S W) V;_‘B’sxn Hdo . (2.13)

The integral (2,12) can also be written as

@ exp (— ilw,?) —m(em'l‘;i) -V/ZIJ;VI IC — isgnA8] = D = const 1 (2.14)

To determine the function p,, we can dispense with integration of the /728
corresponding differential equation: this function enters the integral of the H

problem which can be written in the form of
mLp, — eo, (P=0y — pyos) + A7 (pams + pymy) = 1. ‘ (2.15)
The right-hand side of this integral remains a unit constant during the en-
tire braking process, This is explained by the fact that here the relay con-

trols my stand as multipliers in front of the corresponding functions p, which

vanish at the instant of switching the controls,

3. Investigation of the Solution

The integrals found for the phase coordinates and pulses contain a suffi-
cient number of constants for solving the two-point boundary-value problem under
consideration, As the three constants determining the initial position of the
phase point in phase space we can select, for example, the initial velocity
values ®,5, Wy, Wgo. Then, to satisfy the end conditions of the problem (for
example to obtain wy(T) = w,(T) = w,(T) = O in the case of complete braking)
this leaves the quantities P, ¢, T, where T is the time of the braking process

and P and o are constants of integration entering into egs.(2.9). It follows
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from the requirement of continuity of p, and p, at the points of switching the
moments m, that their amplitude P and phase (Aw? + o) should also be continuous.
This, in turn, indicates that the constant P retains its value during the entire
braking process, whereas the constant o changes stepwise by a magnitude :’c2|)\‘mf
at the points of switching the moment m,, remaining continuous at the points of
switching the moments m, and m,,

Taking into account the expressions (2,9) for p, and p, and also the rela-

tions (1.5), we can rewrite the integral of eq.(2.15) as

|pam|C* 4 PA™ [ my cos (Ao.* + a)| + | my sin (Aw,? 4+ a)lj’— |
— ePo, [0, €08 (ho? + o) — ocsin (o2 + )] = 4 . | (3.1)

Hence, the obtained integral determines only the modulus of the function p,
but not its sign. We can express |pz‘ also as an explicit function w,, after
eliminating w, and w, by means of eq.(2.1L4). However, for numerical calcula-
tions it is apparently more convenient to use eq, (3.1) directly.

The laws of switching the moments m, and m, are given by the following ex-
pressions:

My = |My|max 5g0 c0s (A@,2 + @), My =|m, |max Sg0 sin (A.co} + a) ’ (3.2)

In this case, switching of the moments m, and m, occurs respectively at

points determinable by the equations

i

‘o2 + a = nn + Y,m, Ao,? + a = nx (n=0,41,+2,..) ; (3.3)

The phase trajectory of the system is determined by eq.(2.1L), whose right-
hand side changes stepwise at the points of switching the moments my, m,, m,,
We will find the magnitude of this jump at the point of switching the moment m,,

By virtue of the continuity of w and w,, we then obtain L7129

(3.14)

AD (Am) = Dy — D, = Ziosinho? + 2D (80




At the point of switching the moment m at AD, we will have

AD (Am) = D, — D, = Am=rmiet 1) (35 ‘)"' (C— isgnd$§).. (3.5)

z

Here the subscript 1 denotes the value before switching and the subscript 2,
after switching; D is a constant determinable by the integral (2.14). Bgua-
tions (3.4) and (3.5) permit joining the phase trajectory at the points of
switching the controls in a numerical calculation of the braking process., Equa-

tion (2.14) is equivalent to the two real equations:

0y €05 Aw;? 4 o, sin Aw,2 = Re D +

41 1 i
e * (2;;4) (me C 4 m, sgnAS) E

el 4 el =|D 1,—5?““’( a )"' [C Re (Dm) — sgn A S Im (Dm)] + (

Y 4

+ implet12n (€ +

zlhz‘ ) l

5% - f (3.6)

tence, the phase trajectory is the line of intersection of the ruled heli-
coidal surface with a surface of revolution, i.e., a certain spatial spiral-like
curve of variable radius and variable pitch twisting about the axis w,.

At sufficiently large values of w,, at kwf > 1, we can simplify the expres-
sion for the angular velocity w as a function of v, . Substituting the asymp-

totic expansion for the Fresnel integrals

sin{A{o,2

g isd _&Mwmi Li' ;

o S VTR .
®, V2u|al (@ @, V2x|X] G.7)
into eq.(2,14) and omitting the unessential constants, we obtain

(“’—5;’@%?5) exp (— iA@.?) = const . | (3.8)

Multiplying both sides of eg.(3.8) by their conjugate quantities, we find

(0t «rrén‘:rn) + (“’v - m%) = °°““' | (3.9)



As we see, at sufficiently large values of w,, the projection of the phase
trajectory onto the plane wyw, will consist of a sequence of arcs similar to
arcs of circles,

Thus, the derived solution for the coordinates w, and for the pulses py
enables us, in principle, to calculate the nonsingular optimal deceleration con-
ditions of a symmetric body. However, two unknown constants P and o, determin-
able from the boundary conditions of the problem, enter these integrals, There-
fore, for a specific calculation of the braking process it is more convenient to
examine it in the opposite direction, assuming, for example, that at the initial
instant wy, = w, = w, = 0. Then, having assigned the values P and @ we can /730
calculate the entire course of the phase trajectory up to a certain point w,.(T),
wy(T), w,(T). After this, changing the initial values of P and o we can "hit"

a point in the phase space as close as desired to the given point. We note

that, from the formula for the initial value of the modulus p,o

C

Pl = [ — 5 (e cos 00|+ my sin agD] | (3.10)

follows the condition

0P A |
< <”"x°°5‘10!+lmusinao| " (3011)

Depending on the selection of the sign of the quantity p, we obtain two
phase trajectories, symmetric with respect to the plane w, = O, For definitive-~
ness, we can set p,o > O and, consequently, myo > O, Ay > O, The signs of the
controlling moments m,, and my , depending upon the value of the angle oy, are
determined from egs.(3.2).

Figure 1 shows one of the phase trajectories of the problem under con-

sideration plotted by means of the described method, i.e.,, actually for the pro-



cess of acceleration of a body from zero initial velocity up to some final value.
By virtue of the reversibility of the solution of the variational problem, this
trajectory will be optimal also for the process of braking a body from this

point w,(T), w,(T), w,(T) in the phase space up to the point w, = w, =w, = O,

g
3

- s vhn M A wm o WD

e —————

L. Braking at Minimum Consumption of Mass

Assuming that the controlling moments m, are created by a jet engine with
a constant exhaust velocity and that the engines, creating the moments m, and
my, are identical, we will take as the functional of the problem the following

integral

M=§(ulmxl+ulmul+vlmzl)df (1.1)

where M is a quantity proportional to the mass consumed for deceleration and u
and v are positive coefficients. Thus, in this problem we must supplement the

system of equations of motion (1.1) by an additional equation for the function M
M =p|m| +plmy|+v[m,| (L.2)
and seek the conditions for switching the controlling moments my such that M(T)

will be minimal. However, eq.(L.2) is inconvenient in that the moduli of funec-
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tions with alternating signs enter into it., To eliminate this drawback, we will

assume that the values of my can be only positive or equal to zero

Osg’nksglnhhmu

(L.3)

and will assign their sign in egs.(1.1) by introducing additional equations of

Uy, whose entire set of permissible values is limited only by two points u, = +l.

Then, in place of the systems (l.1) and (4.2) we will have

m. u
* x'x . m. u
0x + eoym, = T O — ewz0, = vAu

0 ==, M =pm;+pm, 4 vm,

[15L

(4o1)

It is obvious that the differential equations and thus also the integrals

for the functions p,; and p, remain as before. The integral determining p, will

vary, since the form of the function H will vary where we mst evidently intro-

duce the new quantity pw which is conjugate to the variable M,

It follows from

the formulation of the problem that the quantity pm will be a unit constant

equal to -1 during the entire braking process. With consideration of this func-

tion, we can write H in the following form:

.

. P
A= m (B =) (=) +

+m, (P(z;uz — V)"‘ E‘Dz(Px‘Dv“ py(l)x) .

(L.5)

From the condition of the maximum of this function with respect to the con-

trols my and uy it follows that

Ux = sgn Py, My = | My |max S8 (Prutx — I) -

Here,

(L.6)

|

I.=1,=pd, I,=vC, Sgw=1 atw>0, Sgw=0 at w<0.§

As before, p, is determined directly from the integral (4.5) which, with

consideration of eq,(4.6), can be written in the following manner:

11



(151 ) (2 ) () g, D)
Since the left-hand side of this equation in optimal conditions cannot be
negative, then
Sgn p; = sgn o, . (1.8)
It follows from eq,(L.7) that, at the end of the braking process when w, =
= wy, = w, = 0, the left-hand side of the equation should also be egqual ic zero,
i,e.,, the conditions
[P (T << X (L.9)
should be satisfied, | |
In cases in which, over a certain section, the condition
|Pel = Ly | (4.10)

is satisfied, singular control conditions may arise at which the magnitude of

the controlling moments may assume not only their own boundary values,

It is evident that a singular regime with respect to the transverse mo- /732

ments m, and m, can occur only simultaneously for both and only when the longi-
tudinal velocity w, is completely eliminated, since otherwise, according to
eq.(2.4), the functions py and p, cannot become constants satisfying the condi-
tion (4.10). With respect to the longitudinal moment m,, the occurrence of a
singular condition is characterized by the conditions w, # O, |p,} =vC. It
follows from this that p; = 0, i.e.,, either w, = w, = O or py®, = Py,

The first case corresponds to the regime of pure rotation of a body about
a longitudinal axis where, of course, the law of variation of the moment m, does
not affect the overall consumption of the working medium,

The second case, as is readily demonstrated, can occur only in passive
zones with respect to the transverse moment, i.e,, in the sections where m = O,
We note that in the general case in passive zones where m = 0, the derivative p;

12




assumes a constant value [this is easily demonstrated by means of eqs.(2,5) and
(2,11)] so that the function p, varies linearly in these time intervals,

It follows from the form of the integral (4.7) that, during the entire
braking process, the function p, varies monotonically, continuously increasing
or continuously decreasing depending upon the sign of the initial velocity w,o.
Assuming that, at the initial instant, we have ®@,, > 0, then, according to
eq.(L.8), p,e > O and the function p, will increase, In this case, it is neces-
sary that the condition p,o < -vC be satisfied since otherwise, by virtue of
eqs.(h;h) and (4.6), the angular velocity w would begin to increase continuously
and no deceleration will be accomplished,

Analogously, if w,, < O, then the initial value of p,o, should be greater
than vC. Since the above statements remain valid for any instant of time, we
can conclude that the sign of the function p, should always be opposite to the
sign of w,, i.e.,

He = T SER O - (L.11)

Thus, deceleration of longitudinal angular velocity takes place by switch-
ing the moment m, in a direction opposite to the direction of w,, If the magni-~
tude of this moment remains constant at all times, then the duration of its
action T will be determined by the formula

_|m20]C

T T | (L.12)

and

[P @ =~C - (1.13)

The law of variation of w, will then be linear so that, assuming w,o > O
for definitiveness, we will have
0 = 0 —M,CU . (4e14)
In view of this, until t < 7, i.e., until the velocity w, vanishes, we can

13



as before use w, in place of the time t as the independent variable, Thus, /733
in the interval 0 < t < T the integrals (2.8) and (2.1)) remain valid, and we
need only introduce the equations of u, before the corresponding moments my, In
this case, of course, it must be femembered that, unlike the problem of the

speed of response, passive Zones appear in the equations of my; and my, i.e.,
sections in which my = 0 (k = x, ¥).

The position of these zones is determined by the condition

[Pl pd, [pyl<<pd . | (L.15)

From the requirement that these conditions at the final instant of time
must be satisfied simultaneously, the amplitude P will be expressed by the in-
equality

pA <P <LpdV2 . (L.16)

5. Deceleration of Transverse Velocity

The particular case of this problem is the problem of eliminating preces—

sional motions of a body, i.e., of removing the transverse components of the

Fig.2

angular velocity of a symmetric body w, and w, at m, = 0. In these conditions,

the form of the solution will differ since w, = w,y = const; consequently, in

1L



place of the system (1.1) we will have a system of linear equations with con-
stant coefficients, Designating

“n =P (5.1)
for the complex angular velocity w and the function p = p, + ip, we will have

the following integrals

s

'3 Y
" 3 2 -
(e) - ) e = const, pe™# = const , (5

p /02)

hS

Hence, the phase trajectory in the plane w,w, will be a curve comprised of
arcs of circles, Unlike the speed-of-response problem, here arcs with a center
at the origin of the coordinates corresponding to the zones where my = my, = O
will also become a part of these curves,

To plot the phase trajectory of the system we will first construct a dia-
gram in the form of a circle of radius P and a square with a side AuA, as shown
in Fig.2. Then the terminus of the vector p = pet (Pt + az upon moving along
this circle, will osculate the zones corresponding to different values of the
controls m, and m, and, obviously, the hatched segments will correspond to sec-
tions of inclusion of the moments m, and m, while the unhatched segments cor-
respond to passive zones, i.e.,, to sections m, = m = 0. e easily see that

the width of the passive zone y, just as the width of each of the active zones §,

depends on the value of the ratio wA/P and will obey the following relations:
cos 1/,0 = nd / P, TH8=1n . : (5.3)

By means of this diagram, we can construct a family of phase trajectories
proceeding from the origin of the coordinates, It is evident that the first
section should be active, for example my # O, and for definitiveness we will as-
sume that cos oo > uA/P so that uy =1,

Then, according to eq.(5.2) the equation of the initial segment of the

15



phase curve will become

ol +(‘°v—7,j)z= (;})2 SR (5.4)

As soon as the complex vector p in Fig.2 turns through an angle 1/2 6, i.e., as
soon as the complex vector @ - i(m,/pA) in the phase plane rotates relative /734
to the point a; through an angle 1/28 - o, the moment m, will be excluded and,
furthermore, the phase curve will be an arc of circle described from the origin
of the coordinates to the central angle y, Then, the moment m, will be in-
cluded, the phase trajectory will pass along the arc of circle described from

the center at the point ag(w, = 0, Wy = -m,/pA), and the length of the arc obvi-
ously will make the angle 6., After this, the moment m, is excluded and the tra-
jectory becomes a segment of the arc v described from the corigin of the coordi-

nates,

w,

Fig.3

Continuing this process we can show that the family of phase trajectories
in the axes wyw, will have the form shown in Fig.3a. As we see, the entire
phase plane is divided into eight sectors by switching lines made up of arcs of
circles, the length of each of which in angular measure is equal to &, Four of
these sectors correspond to the active zones of braking and the four others to

the passive zones, where motion by inertia takes place. We note that the width

16




of the passive zone vy in this problem, where control of longitudinal velocity is
not provided for, can be arbitrary within the limits 0 < vy < 1/2mn. The width of
this zone affects only the duration of the braking process and does not affect
the consumption of mass, In the limiting case, where y - O, the passive zones
disappear and the pattern of the phase plane takes the form shown in Fig.3b. It
should be mentioned that the pattern of the phase trajectories actually does not
differ here from that of the phase trajectories in the analogous problem of the
speed of response, with the exception of the rotation of the entire phase plane
through an angle 1/4 ™,

Thus, a comparison of the conditions optimal with respect to speed of re-~
sponse and consumption of the mass of the working medium clearly shows that the
qualitative difference is that, in the latter, the transverse controlling mo-
ments m, and m, do not act similtaneously but are cut in alternately; further-
more, the longitudinal moment m, does not reverse during the deceleration and
always has a sign opposite to that of the longitudinal component of the angular
velocity w,e.

In conclusion, it should be pointed out that the practical realization of
the examined optimal conditions is extremely difficult in view of the complex
character of the switching surfaces located in the phase space of the system,
However, the solutions do permit finding the maximum possible speed of response
or economy of operation of a control system and thus to evaluate, from this

viewpoint, the guality of an arbitrarily selected nonoptimum control regime.
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